A Theorem on Infinite Positive Matrices
نویسندگان
چکیده
منابع مشابه
A note on positive deniteness and stability of interval matrices
It is proved that by using bounds of eigenvalues of an interval matrix, someconditions for checking positive deniteness and stability of interval matricescan be presented. These conditions have been proved previously with variousmethods and now we provide some new proofs for them with a unity method.Furthermore we introduce a new necessary and sucient condition for checkingstability of interval...
متن کاملA note on positive deniteness and stability of interval matrices
It is proved that by using bounds of eigenvalues of an interval matrix, someconditions for checking positive deniteness and stability of interval matricescan be presented. These conditions have been proved previously with variousmethods and now we provide some new proofs for them with a unity method.Furthermore we introduce a new necessary and sucient condition for checkingstability of interval...
متن کاملOn a decomposition for infinite transition matrices
Heyman gives an interesting factorization of I − P , where P is the transition probability matrix for an ergodic Markov Chain. We show that this factorization is valid if and only if the Markov chain is recurrent. Moreover, we provide a decomposition result which includes all ergodic, null recurrent as well as the transient Markov chains as special cases. Such a decomposition has been shown to ...
متن کاملNon-additive Lie centralizer of infinite strictly upper triangular matrices
Let $mathcal{F}$ be an field of zero characteristic and $N_{infty}(mathcal{F})$ be the algebra of infinite strictly upper triangular matrices with entries in $mathcal{F}$, and $f:N_{infty}(mathcal{F})rightarrow N_{infty}(mathcal{F})$ be a non-additive Lie centralizer of $N_{infty }(mathcal{F})$; that is, a map satisfying that $f([X,Y])=[f(X),Y]$ for all $X,Yin N_{infty}(mathcal{F})...
متن کاملOn the Infinite Products of Matrices
In different fields in space researches, Scientists are in need to deal with the product of matrices. In this paper, we develop conditions under which a product of matrices chosen from a possibly infinite set of matrices 0 i i P , j M P j J k i P 0 k k i converges. There exists a vector norm such that all matrices in M are no expansive with respect to this norm and also ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1969
ISSN: 0002-9939
DOI: 10.2307/2035950